##### $\mathfrak{Mini}$ $\mathbb{Wiki}$

• No tags, yet

1. June 2020

~~NOTRANS~~

# Greatest Common Divisor by Euclid's Division Algorithm

Let $m, n \in \mathbb{Z}$, then the greatest common divisor $gcd(a, b)$ can be computed with following algorithms.

## Iterative Implementation

#!/usr/bin/python

def Euclidian(m, n):
while 1:
q = m // n
r = m - n * q

print(str(m) + " = " + str(q) + " x " + str(n) + " + " + str(r))
assert(r < n)

if r == 0:
return n

(m, n) = (n, r)

## Recursive Implementation

#!/usr/bin/python

def Euclidian(m, n):
q = m // n
r = m % n # m - n * q

print(str(m) + " = " + str(q) + " x " + str(n) + " + " + str(r))
assert(r < n)

if r == 0:
return n
else:
return Euclidian(n, r)

Example: Let $m = 2863$ and $n = 1057$.

m = 2863
n = 1057
print("gcd(" + str(m) + ", " + str(n) + ") = " + str(Euclidian(m, n)))

2863 = 2 x 1057 + 749 $\\$ 1057 = 1 x 749 + 308 $\\$ 749 = 2 x 308 + 133 $\\$ 308 = 2 x 133 + 42 $\\$ 133 = 3 x 42 + 7 $\\$ 42 = 6 x 7 + 0 $\\$ gcd(2863, 1057) = 7

This website uses cookies. By using the website, you agree with storing cookies on your computer. Also you acknowledge that you have read and understand our Privacy Policy. If you do not agree leave the website.More information about cookies 